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Abstract—In this paper, we propose novel reduced-complexity
fast Fourier transform (FFT)-spread faster-than-Nyquist (FTN)
signaling with optimal power allocation for a frequency-selective
fading channel. The information rate of the proposed FTN
signaling is approximately derived by relying on the circu-
lant approximation of the FTN-specific intersymbol interference
matrix and noise covariance matrix. This allows us to consti-
tute efficient calculations of precoding and weighting matrices.
The power allocation coefficients are optimized such that the
approximated information rate is maximized. Our simulation
results demonstrate that the proposed scheme achieves the bit
error ratio performance close to the conventional eigenvalue-
decomposition (EVD)-precoded FTN signaling counterpart that
is optimal in terms of an achievable information rate while
significantly reducing the computational complexity as low as
the order of O(N logN).

I. INTRODUCTION

Conventional wireless communication systems are designed
based on the Nyquist criterion, which defines a minimum
symbol interval by T0 = 1/(2W ), where 2W represents
the bandwidth of an ideal rectangular shaping filter, and
the associated maximum symbol rate is 1/T0. The excess
bandwidth of 2W (1+β) is induced when employing a realistic
root raised cosine (RRC) shaping filter having a roll-off factor
β > 0. Hence, the achievable spectral efficiency of Nyquist
signaling based on an RRC shaping filter becomes (1 + β)-
times lower than that of an idealistic rectangular shaping filter
(β = 0). To overcome this limitation, the concept of faster-
than-Nyquist (FTN) signaling has been explored for more than
50 years [1–3]. In FTN signaling, a symbol interval is set
lower than that of Nyquist signaling, i.e., T = τT0, where
τ (0 < τ ≤ 1) represents a symbol packing ratio, hence
achieving a higher symbol rate than the Nyquist signaling
counterpart, which is, naturally, achieved at the cost of the
detrimental intersymbol interference (ISI) effects.

To efficiently demodulate ISI-contaminated FTN symbols,
several time-domain (TD) receivers have been developed [4–
7]. In [4], the TD trellis-based iterative decoding algorithm was
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first developed. In [5], the TD equalizer based on the Bahl,
Cocke, Jelinek, and Raviv (BCJR) algorithm was presented.
Also, Prlja et al. in [6] conceived the reduced-state M -
algorithm-based BCJR (M -BCJR) algorithm to further reduce
the decoding complexity. Moreover, in [7], the modified M -
BCJR algorithm was proposed for the sake of striking a
flexible balance between the detection performance and com-
plexity. However, the computational complexity of TD trellis-
based detectors significantly increases upon increasing the
effective tap length and the constellation size, which becomes
prohibitively high, especially in a realistic frequency-selective
fading channel.

By contrast, low-complexity frequency-domain (FD) FTN
receivers have been developed [8–10]. In [8], the single-
carrier FD equalization (FDE) algorithm with the aid of
cyclic prefix (CP) was first applied to FTN signaling, where
the FD weights were derived based on the minimum-mean-
square-error (MMSE) criterion. Owing to the efficient fast
Fourier transform (FFT)-based implementation, practical low-
complexity detection was achieved even in a highly dispersive
frequency-selective fading channel. Moreover, in [9], the hard-
decision MMSE-FDE algorithm in [8] was extended to its
soft-decision (SoD) counterpart to support iterative detection.
In [10], the low-complexity FDE algorithm, capable of joint
channel estimation and data detection, was presented for FTN
signaling in a frequency-selective fading channel.

Precoded FTN signaling relying on the matrix factorization
was proposed [11–14]. In [11], the capacity of FTN signaling
was derived based on the eigenvalue decomposition (EVD) of
an FTN-induced ISI matrix, showing that the capacity of EVD-
precoded FTN signaling without power allocation is identical
to that of unprecoded FTN signaling in [15]. Furthermore,
optimal power allocation was introduced to EVD-precoded
FTN signaling [12, 16], which achieves a higher capacity than
unprecoded FTN signaling and classic Nyquist signaling when
employing the RRC shaping filter having β > 0 for each
scheme [3, 14, 16]. Also, the capacity of EVD-precoded FTN
signaling with optimal power allocation is maximized when
τ = 1/(1+β), which achieves the spectral efficiency equal to
that of Nyquist signaling employing an idealistic rectangular
shaping filter (β = 0) [3, 14, 16]. Note that optimal power allo-
cation of EVD-precoded FTN signaling [12] is implementable
without elaborate symbol truncation only for 1/(1+β) ≤ τ ≤



1 [3, 14, 16]. Furthermore, in [14], EVD-precoded FTN sig-
naling with optimal power allocation designed for an AWGN
channel [12] was extended to that supporting a frequency-
selective fading channel, and the associated information rate
was derived. However, the computational complexity of the
EVD-precoded FTN signaling scheme [14] is as prohibitively
high as O(N3) per block transmission.

The novel contribution of this paper is that we propose novel
reduced-complexity FFT-spread FTN signaling with optimal
power allocation for a frequency-selective fading channel.
Owing to the low-complexity FFT-based implementation, the
computational complexity order of the proposed FTN trans-
mitter and receiver is as low as O(N log2N) per block. More
specifically, the ISI matrix and the correlated noise covariance
matrix, which are specific to received FTN signals, are approx-
imated by circulant matrices. This allows us to decompose the
received FTN signal into N independent parallel substreams
with the aid of FFT-based factorization, hence enabling sim-
plified symbol-by-symbol demodulation. In our simulations, it
is demonstrated that the proposed scheme achieves the BER
performance close to that of the conventional EVD-precoded
FTN signaling counterpart [14], which is highly complex but
optimal in terms of an information rate.

II. PROPOSED REDUCED-COMPLEXITY FFT-SPREAD FTN
SIGNALING WITH OPTIMAL POWER ALLOCATION

In this section, we propose novel reduced-complexity FFT-
spread FTN signaling with optimal power allocation for a
frequency-selective fading channel. The block diagram of the
proposed FTN system is shown in Fig. 1. At the transmitter,
information bits are modulated onto N -length complex-valued
symbols s = [s0, · · · , sN−1]

T ∈ CN , where E[|sk|2] =
σ2

s (k = 0, · · · , N − 1), and E[·] is the expectation operation.
Similar to conventional FTN signaling of [8, 10], the 2ν-length
CP symbols are added to the precoded symbols x as follows:

xcp = [xcp,0, · · · , xcp,N+2ν−1] ∈ CN+2ν (1)
= Acpx (2)
= AcpPs, (3)

where

Acp =

[
02ν×(N−2ν) I2ν

IN

]
∈ R(N+2ν)×N , (4)

and 02ν×(N−2ν) denotes the (2ν×(N−2ν))-sized zero matrix.
Furthermore, P ∈ CN×N is a precoding matrix. The CP-added
FTN signal xcp(t) is given by

xcp(t) =
∑
n

xcp,nh(t− nT ), (5)

At the receiver, the received signal after matched-filtering
is represented by

ycp(t) =

L−1∑
l=0

∑
n

hlxcp,ng(t− (l + n)T ) + η(t), (6)

By removing the 2ν samples associated with CP from the
received sample block y = [ycp(0), ycp(T ), · · · , ycp(N +2ν−
1)]T , the N -length received block are obtained as

r = [r0, · · · , rN−1]
T ∈ CN (7)

= [ycp(νT ), · · · , ycp((N + ν − 1)T )]T (8)
= RcpGh,N+2νAcpx+ η, (9)

where

Rcp = [0N×ν IN 0N×ν ] ∈ RN×(N+2ν), (10)

while Gh,N+2ν is the ((N +2ν)× (N +2ν))-sized ISI matrix
whose kth-row and mth column entry is given by

Gh(k,m) =

L−1∑
l=0

hlg(kT − (m+ l)T ). (11)

Furthermore, by assuming the condition of

g(kT ) = 0 for |k| > ν, (12)

(9) is approximated by [8–10]

r ≃ Gcx+ η, (13)

where the matrix Gc ∈ CN×N is the circulant matrix whose
EVD is given by

Gc = QHΘQ. (14)

Furthermore, Q ∈ CN×N in (14) represents the normalized
discrete Fourier transform (DFT) matrix whose kth-row and
mth-column entry is given by (1/

√
N) exp[−2πj(k−1)(m−

1)/N ]. Additionally, Θ = diag{θ0, · · · , θN−1} is a diagonal
matrix having the diagonal elements calculated by the FFT of
the first column of Gc [8, 10].

A. Approximated Mutual Information

Mutual information between the received block r and the
transmit symbols x is formulated by

I(x; r) = he(r)− he(r|x) (15)
= he(r)− he(η), (16)

where he(·) represents a differential entropy. The upper bounds
of the differential entropies of r and η are given by [17]

he(r) ≤ log2
(
(πe)N

∣∣E[rrH ]
∣∣
det

)
(17)

he(η) ≤ log2
(
(πe)N

∣∣E[ηηH ]
∣∣
det

)
, (18)

where | · |det denotes the determinant operation. For an instan-
taneous fading channel, the covariance matrix of the received
block is approximately given by

E[rrH ] ≃ E[(Gcx+ η)(Gcx+ η)H ] (19)
= GcE[xxH ]GH

c + E[ηηH ] (20)
= GcRxG

H
c +N0G, (21)

where we have Rx = E[xxH ].
As shown in [18], for the limit of N → ∞, a banded
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Fig. 1. System model of the proposed reduced-complexity FFT-spread FTN signaling scheme with optimal power allocation for a channel-uncoded scenario.

Toeplitz matrix T ∈ CN×N , whose first column and
first row are given by [t0, t1, · · · , tm, 0, · · · , 0]T and
[t0, t−1, · · · , t−m, 0, · · · , 0], respectively, is asymptotically
equivalent to a circulant matrix C ∈ CN×N , having the
first column of [t0, t1, · · · , tm, 0, · · · , 0, t−m, · · · , t−1]

T .
Hence, by assuming sufficiently large N and (12), the noise
matrix G, having the Toeplitz structure, is approximated
by a circulant matrix whose first column is given by g =
[g(0), g(T ), · · · , g(mT ), 0, · · · , 0, g(−mT ), · · · , g(−T )]T
(0 ≤ m ≤ ⌈N/2 − 1⌉). In this paper, we assume the
relationship of m = ⌈N/2 − 1⌉. This allows us to factorize
G based on the FFT as follows:

G ≃ QHΨQ, (22)

where we have Ψ = diag[ψ0, · · · , ψN−1] ∈ RN×N , whose
diagonal entries are given by the FFT of g.

Under the assumption of 1/(1 + β) < τ ≤ 1, the upper
bound of mutual information I(x; r) is approximated by

I(x; r) ≤ log2
(πe)N

∣∣E[rrH ]
∣∣
det

(πe)N |E[ηηH ]|det
(23)

≃ log2

∣∣GcRxG
H
c +N0G

∣∣
det

|N0G|det
(24)

= log2

∣∣∣∣IN +
1

N0
GcRxG

H
c G−1

∣∣∣∣
det

(25)

≃ log2

∣∣∣∣IN +
1

N0
GcRxG

H
c QHΨ−1Q

∣∣∣∣
det

(26)

= log2

∣∣∣∣IN +
1

N0
QHΘQRxQ

HΘHΨ−1Q

∣∣∣∣
det

(27)

= log2

∣∣∣∣IN +
1

N0
Ψ− 1

2ΘQRxQ
HΘHΨ− 1

2

∣∣∣∣
det

,

(28)

where the relationships of |A|−1
det = |A−1|det and |IN +

AB|det = |IN +BA|det are exploited.
Then, according to Hadamard’s inequality [17, 19], the

upper bound of the approximated mutual information (28)
is maximized when Ψ− 1

2ΘQRxQ
HΘHΨ− 1

2 is a diagonal
matrix, i.e., when QRxQ

H is a diagonal matrix. By letting

Γ = diag[γ0, · · · , γN−1] ∈ RN×N be a real-valued diagonal
matrix, (28) is maximized when the following equality holds:

QRxQ
H = σ2

s Γ (29)
Rx = σ2

s Q
HΓQ (30)

⇔ x = QHΓ
1
2 s, (31)

where we assume E[ssH ] = σ2
s IN . Hence, the precoding

matrix to be optimized is rewritten by

P = QHΓ
1
2 (32)

By substituting (31) into (28), the upper bound of the approx-
imated mutual information is maximized as follows:

I(x;y) ≤ log2

∣∣∣∣IN +
σ2

s

N0
Ψ− 1

2ΘΓΘHΨ− 1
2

∣∣∣∣
det

(33)

=

N−1∑
k=0

log2

(
1 +

σ2
s

N0
γkθ

2
kψ

−1
k

)
. (34)

B. Optimal Power Allocation

The coefficients γk are optimized to maximize the r.h.s of
(34) based on the Lagrange multiplier method. The transmit
energy of the CP-added symbols xcp = AcpQ

HΓ
1
2 s is

calculated by [14]

E = E
[
xH

cpGN+2νxcp
]

(35)

= E[tr{xH
cpGN+2νxcp}] (36)

= E[tr{GN+2νxcpx
H
cp}] (37)

= tr{GN+2νAcpQ
HΓ

1
2E[ssH ]Γ

1
2QAT

cp} (38)

= σ2
s tr{GN+2νAcpQ

HΓQAT
cp} (39)

= σ2
s tr{ΓQAT

cpGN+2νAcpQ
H} (40)

= σ2
s tr{ΓΦ} (41)

= σ2
s

N−1∑
k=0

γkϕk, (42)

where

Φ = QAT
cpGN+2νAcpQ

H , (43)



and GN+2ν ∈ R(N+2ν)×(N+2ν) represents the
Toeplitz matrix whose first row and first column
are given by [g(0), g(−T ), · · · , g(−(N + 2ν)T )] and
[g(0), g(T ), · · · , g((N + 2ν)T )]T , respectively. Moreover,
ϕk represents the kth diagonal element of Φ,1 and tr{·}
represents the trace operation. If the precoding matrix be
P = IN , the average transmit energy is given by [14]

E = Nσ2
s . (44)

To maintain the transmit energy per block to be unchanged
regardless of P, the energy constraint of E = Nσ2

s is imposed.
With (44) and (42), we arrive at the energy constraint of

N−1∑
k=0

γkϕk = N, (45)

With (34) and (45), the Lagrange function is formulated by

J =
N−1∑
k=0

log2

(
1 +

σ2
s

N0
γkθ

2
kψ

−1
k

)
− α

(
N−1∑
k=0

γkϕk −N

)
,

(46)

where α is the Lagrange multiplier. To maximize (46), the
following problem is solved [12]:

∂J

∂γk
= 0, subject to γk ≥ 0. (47)

Finally, the optimal coefficients γk are given by

γk = max

(
1

αϕk ln 2
− ψkN0

θ2kσ
2
s

, 0

)
, (48)

which is calculated in the same manner as the classic water-
filling algorithm [14, 20].

C. Detection Algorithm

In this section, the detection algorithm of the proposed
FFT-spread FTN signaling scheme is presented. Let us set
the weight matrix at the receiver to W = Q, and then the
approximated received block is rewritten by

rd ≃ QGcx+Qη (49)
= QQHΘQQHΓ

1
2 s+ ηq (50)

= ΘΓ
1
2 s+ ηq, (51)

where ηq = Qη. The covariance matrix of the noise compo-
nents ηq is approximately calculated by

E[ηqη
H
q ] = QE[ηηH ]QH (52)

= N0QGQH (53)
≃ N0QQHΨQQH (54)
= N0Ψ. (55)

1Note that Φ is calculated offline since the matrices Q,Acp, and GN+2ν

do not include channel state information (CSI), hence known in advance of
transmission.

As shown in (51) and (55), the received block and the
noise correlation matrix are approximately diagonalized. This
allows us to carry out efficient sub-optimal symbol-by-symbol
demodulation while reducing the effects of the correlated
noises.

In the proposed FFT-spread FTN signaling, the matrix G
is approximated by QHΨQ, where the approximation may
cause the ill-conditioned problem for around the boundary of
τ = 1/(1 + β). Our extensive simulations revealed that for
τ = 1/(1+β), the approximated eigenvalues may be negative,
depending on m. To avoid this, in this paper, we impose further
limitation on the packing ratio τ , i.e., 1/(1+β)+δ ≤ τ ≤ 1, to
ensure all the positive eigenvalues, where δ ∈ R is a predefined
small value. In our simulations, δ was set as 0.02.

In our proposed FFT-spread FTN signaling with optimal
power allocation, the eigenvalues θk and ϕk are the FFT
coefficients, while the multiplications of the precoding matrix
P = QHΓ

1
2 and the weighting matrix W = Q are efficiently

computed by the IFFT and FFT, respectively. Furthermore, the
power allocation coefficients (48) are computed by the order
of O(N). Thus, the computational complexity of the proposed
FFT-spread FTN transceiver is given by O(N logN).

III. SIMULATION RESULTS

In this section, we provide the simulation results to in-
vestigate the BER performance of the proposed FFT-spread
FTN signaling scheme. We considered the frequency-selective
Rayleigh block fading channel with the L-tap, and the channel
coefficients hl were randomly generated according to the
complex-valued Gaussian distribution of CN (0, 1/L). The
basic system parameters of N = 1024 and β = 0.25 were
set throughout the simulations.

In our BER calculations, we considered the three-stage
serially-concatenated turbo coding architecture of [14], where
the half-rate recursive systematic coding (RSC) encoder hav-
ing the constraint length of 2 and octal generator polynomial
(3, 2) was employed as the outer encoder, while the unity
rate coding encoder was used as the inner encoder [21]. The
number of outer decoding iteration and that of inner decoding
iteration were set to 40 and 2, respectively [14]. Moreover,
the target interleaver length was set to around 200000 bits.2

Similar to conventional EVD-precoded FTN signaling [14],
the log-likelihood ratio (LLR) of the received symbols is
efficiently calculated since the equivalent channel matrix and
the noise covariance matrix are approximately diagonalized.

The transmission rate of the proposed half-rate turbo-
encoded FFT-spread FTN signaling system is given by

Rt =
1

2
· 1

2W (1 + β)
· 1

(N + 2ν)τT0
·
N−1∑
k=0

bk [bps/Hz],(56)

where the coefficient 1/2 represents the coding rate of the
RSC code, and bk denotes the number of bits assigned onto

2Similar to [14], multiple transmit blocks having the N symbols were
concatenated by ignoring the detrimental IBI effects for simplicity.
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Fig. 2. BER performance of the proposed FTN signaling scheme with optimal
power allocation. The roll-off factor was fixed to β = 0.25, while the packing
ratio was given by τ = 0.9 and 0.82. The other system parameters were set
to N = 1024, L = 20, and ν = 30, and the target transmission rate was set
to Rt = 1 and 2.

the kth symbol. The part of the symbols is deactivated when
the associated power allocation coefficients were γk = 0 as
an optimization result of (48). Hence, the number of bits bk
change depending on CSI to maintain the target transmission
rate, which is referred to as bit-loading in this paper.3

Fig. 2 shows the BERs of the three-stage turbo-coded FFT-
spread FTN signaling scheme with optimal power allocation,
where the packing ratio was given by τ = 0.9 and 0.82, and
other system parameters were given by L = 20, and ν = 30.
The target transmission rate was set to Rt = 1 and 2. For
comparison, the BER curves of Nyquist signaling counterpart
(τ = 1) employing the same RRC shaping filter were plotted,
where we set 2ν = L = 20 [22, 23]. Observe in Fig. 2
that the proposed scheme achieved better BER performance
than its Nyquist signaling counterpart, and the proposed FTN
scheme with τ = 0.82 achieved the best BER performance.
More specifically, upon increasing the target transmission rate
from Rt = 1 to 2, the performance advantage of the proposed
scheme with τ = 0.82 over the Nyquist signaling counterpart
increased from 1.2 dB to 1.8 dB.

Fig. 3 shows the BERs of the proposed schemes with and
without optimal power allocation. For the proposed scheme
without power allocation, we set γk = 1 (k = 0, · · · , N − 1)
which dispenses with CSI for precoding, unlike the proposed

3In our simulations, binary phase-shift keying (BPSK) was used for all
the activated symbols. Then, quadrature PSK (QPSK) was used to replace
the BPSK-modulated symbols from the first activated symbol to the last
one until the target transmission rate was achieved. The same operation was
repeated using 16-point quadrature amplitude modulation (QAM), 64-QAM,
256-QAM, and 1024-QAM until the target transmission rate was achieved.
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Fig. 3. BER performance of the proposed FTN signaling schemes with and
without optimal power allocation. The system parameters were set to β =
0.25, τ = 0.9, N = 1024, L = 20, and ν = 30. The target transmission
rate was set to Rt = 1 and 2.

scheme with power allocation. This implies that the proposed
scheme without power allocation is the open-loop system,
while the proposed scheme with power allocation is the closed-
loop one. The packing ratio was set to τ = 0.9, and other
system parameters were the same as those used in Fig. 2. As
shown in Fig. 3, our optimal power allocation allows us to
have the better BER performance, where the gap decreased
upon increasing the transmission rate. More specifically, the
gaps were 0.9 dB and 0.4 dB for Rt = 1 and 2, respectively.

Furthermore, Fig. 4 shows the BER comparisons between
the proposed scheme with and without optimal power alloca-
tion, the EVD-precoded FTN signaling scheme with optimal
power allocation [14], and the open-loop SoD-FDE-aided FTN
signaling scheme with soft cancellation [10]. Note that the
computational complexity in the proposed scheme is as low as
O(N logN), while those of the EVD-precoded FTN signaling
scheme and the open-loop SoD-FDE-aided FTN signaling
scheme with soft cancellation are O(N3) and O(N2), respec-
tively. The system parameters were set to τ = 0.82, L = 20,
and ν = 30. The target transmission rate was set to Rt = 0.461
for each scheme. In Fig. 4, it was observed that the proposed
scheme with optimal power allocation outperformed two other
open-loop schemes, i.e., SoD-FDE-aided unprecoded FTN
signaling scheme [10] and the proposed FTN scheme without
power allocation, where the associated performance gaps were
2.1 dB and 3.2 dB, respectively. Naturally, the EVD-precoded
FTN signaling with optimal power allocation [14] exhibited
the best performance owing to the optimality in terms of an
achievable information rate, which is achieved at the cost
of prohibitively high computational complexity. The penalty
of the proposed scheme with optimal power allocation over
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Fig. 4. BER comparisons between the proposed FTN signaling schemes
with and without optimal power allocation, the EVD-precoded FTN signaling
scheme with optimal power allocation [14], and the open-loop SoD-FDE-aided
FTN signaling scheme with soft cancellation [10]. The system parameters
were set to β = 0.25, τ = 0.82, N = 1024, L = 20, ν = 30, and
Rt = 0.461.

the EVD-precoded FTN signaling scheme with optimal power
allocation [14] is imposed due to the circulant matrix approxi-
mation and the power penalty caused by the CP insertion. Note
that a sufficiently long guard interval has to be added for the
EVD-precoded FTN signaling benchmark [14] to eliminate the
detrimental IBI effects, while it was ignored in our simulations.

IV. CONCLUSIONS

In this paper, we proposed the novel reduced-complexity
FFT-spread FTN signaling with optimal power allocation for a
frequency-selective fading channel. Under the circulant matrix
approximation of the equivalent channel matrix and the noise
covariance matrix, the approximated information rate of the
proposed scheme was formulated. Then, the optimal power
allocation coefficients were derived by maximizing the approx-
imated information rate. Our simulation results demonstrated
that the proposed FTN signaling scheme achieved the BER
performance close to the EVD-precoded FTN signaling bound,
which is optimal in terms of an information rate while reducing
the transceiver’s computational complexity imposed by the
calculations of precoding and weighting matrices.
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[2] J. Anderson, F. Rusek, and V. Öwall, “Faster-than-Nyquist signaling,”
Proceedings of the IEEE, vol. 101, no. 8, pp. 1817–1830, Aug. 2013.

[3] T. Ishihara, S. Sugiura, and L. Hanzo, “The evolution of faster-than-
Nyquist signaling,” IEEE Access, vol. 9, pp. 86 535–86 564, June 2021.

[4] A. D. Liveris and C. N. Georghiades, “Exploiting faster-than-Nyquist
signaling,” IEEE Transactions on Communications, vol. 51, no. 9, pp.
1502–1511, Sep. 2003.

[5] A. Prlja, J. B. Anderson, and F. Rusek, “Receivers for faster-than-
Nyquist signaling with and without turbo equalization,” in IEEE In-
ternational Symposium on Information Theory, July 2008, pp. 464–468.

[6] A. Prlja and J. B. Anderson, “Reduced-complexity receivers for strongly
narrowband intersymbol interference introduced by faster-than-Nyquist
signaling,” IEEE Transactions on Communications, vol. 60, no. 9, pp.
2591–2601, Sep. 2012.

[7] S. Li, B. Bai, J. Zhou, P. Chen, and Z. Yu, “Reduced-complexity
equalization for faster-than-Nyquist signaling: New methods based on
Ungerboeck observation model,” IEEE Transactions on Communica-
tions, vol. 66, no. 3, pp. 1190–1204, Mar. 2018.

[8] S. Sugiura, “Frequency-domain equalization of faster-than-Nyquist sig-
naling,” IEEE Wireless Communications Letters, vol. 2, no. 5, pp. 555–
558, Oct. 2013.

[9] S. Sugiura and L. Hanzo, “Frequency-domain-equalization-aided itera-
tive detection of faster-than-Nyquist signaling,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 5, pp. 2122–2128, May 2015.

[10] T. Ishihara and S. Sugiura, “Iterative frequency-domain joint channel
estimation and data detection of faster-than-Nyquist signaling,” IEEE
Transactions on Wireless Communications, vol. 16, no. 9, pp. 6221–
6231, Sep. 2017.

[11] Y. J. D. Kim, “Properties of faster-than-Nyquist channel matrices and
folded-spectrum, and their applications,” in IEEE Wireless Communica-
tions and Networking Conference, Doha, Qatar, Apr. 2016, pp. 1–7.

[12] T. Ishihara and S. Sugiura, “SVD-precoded faster-than-Nyquist signaling
with optimal and truncated power allocation,” IEEE Transactions on
Wireless Communications, vol. 18, no. 12, pp. 5909–5923, Dec. 2019.

[13] M. Mohammadkarimi, R. Schober, and V. W. S. Wong, “Channel
coding rate for finite blocklength faster-than-Nyquist signaling,” IEEE
Communications Letters, vol. 25, no. 1, pp. 64–68, Jan. 2021.

[14] T. Ishihara and S. Sugiura, “Eigendecomposition-precoded faster-than-
Nyquist signaling with optimal power allocation in frequency-selective
fading channel,” IEEE Transactions on Wireless Communications, 2021,
in press.

[15] F. Rusek and J. B. Anderson, “Constrained capacities for faster-than-
Nyquist signaling,” IEEE Transactions on Information Theory, vol. 55,
no. 2, pp. 764–775, Feb. 2009.

[16] T. Ishihara and S. Sugiura, “Comments on and corrections to “SVD-
precoded faster-than-Nyquist signaling with optimal and truncated
power allocation”,” TechRxiv, pp. 1–1, 2021. [Online]. Available:
https://doi.org/10.36227/techrxiv.14949681.v1

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[18] R. M. Gray, Toeplitz and circulant matrices: A review, department of
Electrical Engineering, Stanford, Tech. Rep., 2006. [Online] Available:
http://ee.stanford.edu/˜gray/toeplitz.pdf.

[19] A. Dembo, T. M. Cover, and J. A. Thomas, “Information theoretic
inequalities,” IEEE Transactions on Information Theory, vol. 37, no. 6,
pp. 1501–1518, Nov. 1991.

[20] A. Goldsmith, Wireless communications. Cambridge University Press,
2005.

[21] D. Divsalar, S. Dolinar, and F. Pollara, “Serial concatenated trellis coded
modulation with rate-1 inner code,” in IEEE Global Telecommunications
Conference, vol. 2, San Francisco, CA, Nov. 2000, pp. 777–782.

[22] N. Al-Dhahir, “Single-carrier frequency-domain equalization for space-
time block-coded transmissions over frequency-selective fading chan-
nels,” IEEE Commun. Lett., vol. 5, no. 7, pp. 304–306, July 2001.

[23] D. Falconer, S. L. Ariyavisitakul, A. Benyamin-Seeyar, and B. Eidson,
“Frequency domain equalization for single-carrier broadband wireless
systems,” IEEE Commun. Mag., vol. 40, no. 4, pp. 58–66, Apr. 2002.


